Algorithmic Ideas

From Algorithm Design, by Kleinberg and Tardos:

Algorithmic ideas are pervasive, and their reach is apparent in examples both within computer science and beyond. Some of the major shifts in Internet routing standards can be viewed as debates over the deficiencies of one shortest-path algorithm and the relative advantages of another. The basic notions used by biologists to express similarities among genes and genomes have algorithmic definitions. The concerns voiced by economists over the feasibility of combinatorial auctions in practice are rooted partly in the fact that these auctions contain computationally intractable search problems as special cases. And algorithmic notions aren’t just restricted to well-known and long-standing problems; one sees the reflections of these ideas on a regular basis, in novel issues arising across a wide range of areas. The scientist from Yahoo! who told us over lunch one day about their system for serving ads to users was describing a set of issues that, deep down, could be modeled as a network flow problem. So was the former student, now a management consultant working on staffing protocols for large hospitals, whom we happened to meet on a trip to New York City.

The point is not simply that algorithms have many applications. The deeper issue is that the subject of algorithms is a powerful lens through which to view the field of computer science in general. Algorithmic problems form the heart of computer science, but they rarely arrive as cleanly packaged, mathematically precise questions. Rather, they tend to come bundled together with lots of messy, application-specific detail, some of it essential, some of it extraneous. As a result, the algorithmic enterprise consists of two fundamental components: the task of getting to the mathematically clean core of a problem, and then the task of identifying the appropriate algorithm design techniques, based on the structure of the problem. These two components interact: the more comfortable one is with the full array of possible design techniques, the more one starts to recognize the clean formulations that lie within messy problems out in the world. At their most effective, then, algorithmic ideas do not just provide solutions to well-posed problems; they form the language that lets you cleanly express the underlying questions.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s